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Abstract. Earlier obtained numerical and analytical (non-path-integral) results for the writhe
of a circular polymer are reproduced exactly employing the available path integral models for the
semiflexible chains. It is confirmed analytically that the average writhe scales with the root of
the chain length. We also briefly discuss related topological problems (e.g. knotting of circular
polymers), which could be formulated and solved with the use of path integrals.

1. Introduction

Recently [1–3] there have appeared a number of papers which analyse the writhe of self-
avoiding polygons placed on three-dimensional (R3) lattices. Both, analytical and Monte
Carlo results were reported with the purpose of gaining some insight into the entanglement
complexity of the self-avoiding polymers in solution. The entanglement complexity is
believed to affect the coil-soluble transition [4, 5], as well as the rheological properties [6, 7]
of polymer solutions. To estimate the effects of entanglement complexity, the following
procedure is suggested [8, 9]. Generate numerically a knotted ring. Consider its projection
into some arbitrary two-dimensional (R2) plane. Then count the number of crossings (over
and under) along the contour of the projected image of a circle in the plane. Repeat the
same procedure for other planes and take an average of the obtained numbers (i.e. make
an average over the possible orientations of the plane). The so obtained entanglement
complexity number〈C〉 for a ‘polymer’ chain of lengthN follows a scaling law and was
estimated to be

〈C〉 ∝ Nαc (1.1)

where 1< αc < 2. Monte Carlo calculations performed in [2] produceαc ' 1.222± 0.005.
Unfortunately, an analytical expression for〈C〉 is unknown and, hence, we must rely,

so far, only on the Monte Carlo data. A more accessible quantity is the average writhe
number which is closely related to〈C〉. It can be defined in precise analytical terms such
that the average writhe can be computed analytically. The present work provides an attempt
to perform such a calculation. The writhe of a curve can be defined as follows [1, 2, 10, 11].
We assign a direction to aR3 curve and project it into aR2 plane specified by the unit
vectorn normal to this plane. The projection of a curve in this plane also carries a direction
inherited from its 3D pre-image. We also count crossings, as before, but this time we assign
+1 (or−1) for each over (under) crossing. The obtained result should also be averaged over
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all n directions. If, in addition, the averaging over directions along the curve is performed,
then the average writhe〈Wr〉 is zero by symmetry. The writhe is defined as

Wr = 1

4π

∮
C

∮
C

dr(τ ) × dr(τ ′)
(r(τ ) − r(τ ′))
|r(τ ) − r(τ ′)|3 (1.2)

where C is the contour of the path andr(τ ) the location of a point on the curveC at
contour positionτ . To obtain the non-zero result for the writhe we have either to consider
〈|Wr |〉, as is done in [1], or to consider the average writhe for the fixed orientation of the
curve. In the last case the quantity〈Wr〉 could be both positive and negative. Taking the
absolute value of this quantity (or using〈|Wr |〉 instead), the averaged expression for the
writhe is expected to behave as

〈|Wr |〉 ∝ Nα (1.3)

whereα is numerically found to be [2]> 0.5. This result is in excellent agreement with an
earlier obtained analytic estimate of the exponentα [1] which providesα = 0.5. Since the
analytic result of [1] was obtained without any use of the existing polymer models, it is of
interest to analyse this result using known path integral models of polymers. In this paper
we provide an explicit calculation based on the path integral formulation for semiflexible
polymers which we have already discussed earlier in [12].

2. Description of the model and statement of the problem

In order to provide an analytical theory for the scaling of the writhe with the lengthN of
the path, we define the partition function for a semiflexible ring polymer by

Z =
∫

du G(ui = uf = u; N)

=
∫

du

∫
ui(0)=uf(N)

D[u(τ )]
∏
τ

δ(u2(τ ) − 1) exp

[
− 1

2
γ

∫ N

0
dτ

(
∂u

∂τ

)2 ]
(2.1)

whereu is the tangent vector,u = dr/dτ with r(τ ) having the same meaning as in (1.2).
The coupling constantγ represents the bending rigidity modulus of the chain [12–14], so
that the exponent in the path integral represents the integration over the contour of the square
of the local curvature of the polymer chain, i.e. the total bending energy. The path integral
(2.1) is known in the polymer literature [12] to represent a Kratky–Porod (KP) chain with
bending energyγ [13].

To compute the average of the writheWr , we introduce a generating functional

Z(g) =
∫

D[u(τ )]
∏
τ

δ(u2(τ ) − 1) exp

[
− 1

2
γ

∫ N

0

(
∂u

∂τ

)2

dτ + igWr [u(τ )]

]
(2.2)

and obtain the averaged writhe

〈Wr〉 = 1

i

∂ ln Z(g)

∂g
. (2.3)

The imaginary i-factor is introduced here for convenience to show the correspondence to
the analogous quantum problem. Thus defined average writhe is non-zero only for the fixed
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orientation of the curve, as we have mentioned in section 1. Alternatively, by using the
identity

exp(−|x|) = 1

π

∫ ∞

−∞
dy

exp(ixy)

1 + y2

= 2(x)e−x + 2(−x)ex (2.4)

where2(x) is a step function, we could calculate〈|Wr |〉. This time the imaginary i-factor
would occur quite naturally. Use of (2.4) in (2.2) will, nevertheless, not affect the logic
and the technical evaluation of the mathematical expressions involved in the rest of our
calculations. Therefore, we prefer to work directly with equation (2.2). Equation (2.2)
can be related to the exactly solvable quantum mechanical problem. In our previous work
[15] we have emphasized that the real three-dimensional curve should be described by the
curvature and the torsion. The torsion term can be formally added to the exponent of (2.1)
in a variety of ways (as discussed later in section 4). We, however, will choose only one
way of incorporating the torsion term. Following Polyakov [16] and our earlier work [12],
we replace the KP path integral (2.2) by the integral of the following form:

Z =
∫

du G(ui = uf = u; N)

=
∫

du

∫
D[u(τ )]

∏
τ

δ(u2 − 1)

× exp

{
− γ

2

∫ N

0
dτ

(
du

dτ

)2

+ i2
∫ N

0
dτ C[u(τ )]

}
(2.5)

whereC[u(τ )] is the torsion of the curve, which is related to the self-linking number9 of
the same curve according to the White theorem [10, 11] as

9 = TW + Wr (2.6)

and θ is a coupling constant related tog (see below). In view of the results obtained in
[17], the twisting numberTW is defined by

TW = − 1

2π

∫ N

0
dτ C[u(τ )]. (2.7)

Combining the last two equations, we obtain

Wr = 9 − TW . (2.8)

In addition, using the results of [12, 16] we can write∫ N

0
dτ C[u(τ )] $

∫ N

0
dτ

∫ N

0
dτ ′ u ·

(
∂u

∂τ
× ∂u

∂τ ′

)
(2.9)

where$ indicates equality up to, for the present purpose, an unimportant number (in our
case9 is just a pure number [18]) which can be discarded.

We have discussed in some detail the treatment of the path integral given by (2.2)
(together with (2.9)) in a previous work [12], therefore here we only provide the results
needed directly for the present calculations. Combining equations (2.5) and (2.9) produces
a propagator which describes formally the Dirac monopole in quantum mechanics. In
appendix A we provide details which furnish some of the basic properties of such path
integrals and their implications. Here, we only state that the Schrödinger-like equation for
the propagator given by (2.5) can be solvedexactly[19, 20] and has been recently discussed
in [12, 21, 22]. We shall utilize its known solution in the next section (and appendix B)
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while here we only notice that the coupling constantg = 2π2 in the quantum case cannot
be arbitrary. It has been shown in detail [20–23] that in the quantum case 22 should be
an integer 22 = 0, ±1, ±2, . . .. In the present polymer problem, an arbitrary value forg

is used to calculate the average writhe. Therefore, we assume first thatg is continuous, as
was done earlier in [24]. Then we can formally use (2.3) to calculate the average writhe.
After this procedure we restore the discreteness ofg as required.

To compare the results of our calculations with the Monte Carlo results of [1–3], we
would like to notice that, according to earlier obtained results [12], the non-zero values
of g influence considerably the stiffness of the polymer chain. Since, in the reported
numerical calculations, only the self-avoidance constraint was implemented, this means that
the effective rigidity of the chain was sufficiently low. Under these conditions we can
formally rewrite (2.3) as

〈Wr(R)〉 = lim
g→0

1

i

∂

∂g
ln Z(g, N). (2.10)

Some care must be taken when the actual calculations in this limit are made as it will
become clear in the next section. At the same time we would like to notice that, because
the partition function (2.5) can be calculated exactly, there is no need to requireg = 0 in
general. Notice that in the Monte Carlo (MC) simulations random walk chains are used.
In the present work we model the polymers by semiflexible chains. We then have two
additional parameters, i.e.γ andg, which can be accounted in the future MC simulations.
Equation (2.10) represents a kind of ‘linear response’, i.e. a Kubo-like result, where the
average is made over the unperturbed ‘equilibrium’ system.

3. Calculation of the averaged writhe

By the explicit use of the results presented in appendix A, as well as those from [12, 16], it
is easy to recognize that forg = 0 the partition functionZ(g, N) is just that for quantum
rotator [25] and, whence, can be written at once in terms of the corresponding eigenvalues:

Z(g = 0, N) =
∞∑

j=0

(2j + 1) exp

{
− N

2γ
j (j + 1)

}
. (3.1)

It is well known that this sum cannot be calculated in the closed form. However, we can
approximately formally replace the summation by the integration in (3.1). This leads to the
following semiclassical approximation [25]:

Z(g = 0, N) ≈
∫ ∞

0
dx 2x exp

{
− N

2γ
x2

}
= 2γ

N
. (3.2)

In the case of finiteg, i.e. for the corresponding Dirac monopole problem, we have an
expression similar to (3.1). Indeed, it was shown that the energy levels are given by [22]

Ej = 1

2γ
[j (j + 1) + |g|(2j + 1)] (3.3)

which is just a combination of the rigid rotator and the harmonic oscillator energy levels.
This observation is very important for the present problem as we shall demonstrate shortly.
The energy levelEj is degenerate. Its degeneracy is given by

degeneracy(j th level) = 2|g| + 2j + 1. (3.4)
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The use of (3.3) and (3.4) allows us to compute the generating function for finiteg (Dirac
monopole) as

Z(g, N) =
∞∑

j=0

(2|g| + 2j + 1) exp{−NEj } (3.5)

where theEj are given by (3.3). Obviously, the new partition function is reducible to that
given by (3.1) as required.

With the help of (3.5), the average writhe can now be formally calculated according to
(2.3) (or (2.10)). However, we immediately run into the following problem. Equations (2.3)
and (2.10) both contain an imaginary i-factor, while the partition function given by (3.5)
is manifestly real, so that if we use (3.5) for calculation of〈Wr〉 we obtain formally an
imaginary result. This fact isnot a mistake in our arguments and it does have a deep
physical meaning. We provide an explanation of this point in appendix B. Here, we only
state that the imaginary i-factor in equations (2.3) and (2.10) is an artifact of the formal
manipulations with the path integrals. More careful analysis performed in [22] (and outlined
in appendices A and B) allows us just to ignore the i-factor in these equations. This is true
if the sign of g in (2.2) is fixed in the rest of our calculations. If it is not fixeda priori,
then equation (2.3) should be used in combination with equation|x| = 2(x)x − 2(−x)x

in (3.5) and the imaginary i-factor reappears. Use of the modulus sign in (3.5) leads to
non-analyticity of this partition function atg = 0 so that formally equation (2.10) cannot
be used in combination with (3.5). To remove this problem, we have to make a decision
about the sign ofg at the very beginning of our calculations, e.g. in equation (2.2). The
choice of the sign has some physical meaning, as will be explained shortly. If we choose
g > 0, for example, then we obtain

〈|Wr |〉 = 1

Z(g, N)

[
2

∞∑
j=0

exp{−NEj } +
∞∑

j=0

(2j + 1)(2g + 2j + 1) exp{−NEj }
]
. (3.6)

If we now let g → 0+ and replace the summation in (3.6) by the integration in the same
fashion as in (3.2), we obtain formally

〈|Wr |〉 = N

2γ

[√
2γπ

N
+ const

γ 3/2

N3/2

]
∝

√
N

γ
+ O

(
1√
N

)
. (3.7)

which is the central result of our paper, i.e. the average writhe〈|Wr |〉 scales with the square
root of the chain length,

√
N .

On the other hand, if we selectg < 0, then (2.10) we get, instead of (3.7),
〈|Wr |〉 ∝ −√

N . Therefore the algebraic sum of (3.7) and this result would lead to zero,
which is in complete agreement with our discussion in section 1 about the average writhe.
The choice of sign forg, thus, is equivalent to the choice of orientations of our closed
curve. The obtained results are in complete agreement with earlier obtained numerical and
analytic results of [1–3].

4. Discussion

In summary, we have succeeded in calculating the scaling behaviour of the writhe for
semiflexible polymers by using the path integral methods. Several questions remain to
be discussed. Recently, there appeared several papers dealing with supercoiling of DNA,
which employ the classical mechanics formalism [14, 30–34] for the calculation of the
elastic energy and the conformations for (super)coiled DNA. Therefore, the question arises
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of how one can use the results of these works in order to calculate the average writhe.
Unfortunately, we cannot provide a complete answer to this question. Instead, we only
notice that the classical models discussed in these papers cannot be straightforwardly
quantized using the canonical formalism as discussed in appendices A and B. Accordingly,
the corresponding Schrödinger-like equations would be much harder to obtain and to solve.
Since the calculations presented in section 3 are effectively performed at the semiclassical
level, it would be of interest to reobtain the spectrum, e.g. similar to that given by (3.3),
using semiclassical methods.

In the simulations of [1–3] dependence of the obtained results on the solvent quality
have been investigated. The results indicate that the scaling of the average writhe does not
depend on the solvent quality (i.e. good or bad solvent). So far, our calculations have been
carried out without any excluded volume interactions (see equations (2.1)–(2.3)). However,
we do not expect any changes when these interactions are taken into account, because the
topological quantities do not couple strongly to the monomer densities, e.g. in our earlier
work [35] it was demonstrated that the contribution of coupling terms between the density
(excluded volume) and the tangent vector, i.e.∫ N

0
〈eik·R(τ )(u(τ ) · k)〉 dτ

are negligible.
We also indicate what other topological properties of polymers could be calculated by

use of path integral methods. To this purpose, let us consider the problem of knot formation.
In the physical literature this problem was formulated first by Delbrück [36] and is known
as ‘Delbr̈uck conjecture’ [37]. Delbr̈uck had conjectured that forN → ∞ the probability
PN of knot formation is asymptotically close to one. More precisely, if we generate random
walks of N steps on the regularR3 lattice, then among those walks which are closed and
have a large number of stepsN , only a fraction of measure zero will be unknotted. The
analytic form ofN -dependence forPN was recently obtained by Sumners and Whittington
[38] and, independently, by Pippenger [39] as discussed in [37], where some refinements
of these important results are presented also.

Nevertheless, the problem of knot formation was discussed by mathematicians much
earlier in somewhat different terms. We have found these alternative formulations are much
better suited for treatment in terms of path integrals.

As has already been noticed in [37], Milnor made two remarkable and related discoveries
[40]. Firstly, he proved that ‘if the curve is knotted, there must be a plane which intersects
in at least six points’. This fact can help to detect knots generated by Monte Carlo methods.
Second, ifk(τ ) is the local curvature, then the contour integral is∫ N

0
dτ |k(τ )| > 4π (4.1)

if the closed curve is knotted and

4π >

∫ N

0
dτ |k(τ )| > 2π (4.2)

if the curve is unknotted [41, 42]. More recent related results could be found in [43–45].
Connections between the Alexander polynomial and these differential geometric results
have already been made in Milnor’s work [41] where he also provided an estimate for the
combination

S =
∫ N

0
dτ |k(τ )| +

∫ N

0
dτ |C(τ)| > 2πn (4.3)
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where n is a positive integer (for unknotn = 1) and C(τ) is the torsion of the curve
(e.g. see equation (2.5)). The path integrals with the actionS given by (4.3) have recently
been discussed by particle physicists [46] and in polymer physics [47, 48] in connection
with the problem of ionic strength dependence of the electrostatic persistence length for
polyelectrolyte chains. It remains to use these path integrals in order to check the results
of (4.1) and (4.2) quantum mechanically.
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Appendix A. Classical mechanics of the Dirac monopole problem and its quantum
analogue

According to (2.5) the classical actions for the monopole problem can be written as

S[u] = γ

2

∫ N

0
dτ

(
du

dτ

)2

+ i2
∫ N

0
dτ C[u(τ )] (A1)

where the end of the vectoru is lying on the unit sphereu2 = 1. Instead of adding the
Lagrange multiplier toS, which accounts for this constraint, it is more convenient to rewrite
S in the form which obeys this constraint from the very beginning. For this purpose we
can re-express the vectoru as follows [12, 13]:

u = (Z+σZ) (A2)

whereσ are Pauli matrices,σ = {σ1, σ2, σ3} and Z is a two-component vector. Because
σ 2

i = I whereI is the unit matrix (i = 1–3) we should require

u2 = |Z1|2 + |Z2|2 = 1. (A3a)

Furthermore, letZ1 = x1 + ix2 andZ2 = x3 + ix4, then

u1 = (x1 − ix2, x3 − ix4)

(
0 1
1 0

) (
xi + ix2

x3 + ix4

)
= 2(x1x3 + x2 − x4) (A3b)

and, analogously,

u2 = 2(x1x4 − x2x3) (A4)

u3 = x2
1 + x2

2 − x2
3 − x2

4 (A5)
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so that the constraint (A3) becomes

x2
1 + x2

2 + x2
3 + x2

4 = 1. (A6)

Now, if

Z1 = eiχ cos(θ/2) Z2 = ei(ϕ+χ) sin(θ/2) (A7)

then we obtain with the help of (A3)–(A5) more familiar results:

u1 = sinθ cosϕ

u2 = sinθ sinϕ

u3 = cosθ.

(A8)

With such parametrization, let us consider the term(du/dτ)2 in (A1). It is shown in [26]
that

1

2

(
du

dτ

)2

= 2Ż†Ż − 2a2 (A9)

whereŻ = dZ/dτ , etc and

a = iZ†Ż. (A10)

With the help of the above results the actionS given by (A1) can be written as

S = 2
∫ N

0
dτ [γ {Ż†Ż − a2} − 22a] (A11)

where 22 = 0, ±1, ±2, if the system is to be quantized.
Now let

S =
(

ei(α+δ)/2 cos(β/2) ei(δ−α)/2 sin(β/2)

−e−i(δ−α)/2 sin(β/2) ei(α+δ)/2 cos(β/2)

)
(A12)

whereα, β, δ are the Euler’s angles. It can be shown (26) that

tr(Ṡ+Ṡ) = 2Ż†Ż (A13)

and

a = 1
2 tr(σ3S−1Ṡ). (A14)

Using these relations it is possible to write

tr(Ṡ+Ṡ) = 1
2β̇2 + 1

2(δ̇ + α̇ cosβ)2 + 1
2α̇2 sin2 β. (A15)

The above expression coincides exactly with that for the kinetic energy of the symmetric top
(e.g. see [27], equation (4.83), and choose the moments of inertiaI1 = I3 = I = 1 in this
equation). Combining these results with (A11) we obtain an equation for the asymmetric
top, e.g. see [12] and appendix B. The quantum mechanics for the symmetric top can now be
developed in a usual way [27] via the Hamiltonian formalism with subsequent replacement
of the classical commentators by the quantum mechanical ones. The same procedure for the
asymmetric top produces the corresponding Schrödinger equation for the Dirac monopole.
What is important for us, however, is that the actionS given by (A11)does notcontain
an imaginary i-factor discussed in the main text. This fact will be further explained in
appendix B.
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Appendix B. Geometry of the quantum Dirac monopole problem

Following [18] and our earlier work [28] it can be shown that

2

∫ N

0
dτ C[u(τ )] =

∫ N

0
dτ

du

dτ
· A[u(τ )] (B1)

where the vector potentialA is given by (22)

A =
(

− gu2

1 + u3
,

gu1

1 + u3
, 0

)
(B2)

with u1, u2 andu3 being given in (A8).
Once we recognize that such a vector potential representation is possible, we can

immediately use the quantum mechanical correspondence rules [29] which imply that the
Schr̈odinger-like equation should look like

i
∂9

∂t
= 1

2
(−i∇ − A)29 ≡ Ĥ9 (B3)

where we have rescaled all variables to absorb the dimensional constants. In view of the
discussion presented in section 3 and in appendix A, the HamiltonianĤ should respect the
spherical symmetry of the problem. Explicit calculation [22] produces

2Ĥ = − 1

sinθ

∂

∂θ
sinθ

∂

∂θ
− 1

sin2 θ

∂2

∂ϕ2
+ 2ig

1 + cosθ

∂

∂ϕ
+ g2

(
1 − cosθ

1 + cosθ

)
. (B4)

The Schr̈odinger-like equation with such a defined Hamiltonian was solved long ago [20]
by Tamm. However, the solution which he obtained is not illuminating. To make it more
transparent, use of the stereographic projection is the most helpful. This projection converts
initially a three-dimensional problem to that in the plane. We have demonstrated earlier
[7], that in the plane, use of complex variables is most convenient. In the present case we
introduce the complex variableZ and its conjugatēZ so that the stereographic projection
is achieved by writing

Z =
√

2geiϕ tan

(
θ

2

)
Z̄ =

√
2ge−iϕ tan

(
θ

2

)
.

(B5)

In terms of such introduced complex variables the HamiltonianĤ acquires the following
form:

Ĥ /g = −
(

1 + |Z|2
2g

)
∂̄∂ − 1

2

(
1 + |Z|2

2g

)
(Z∂ − Z̄∂̄) + 1

4
|Z|2 (B6)

where∂ = ∂/∂Z, ∂̄ = ∂/∂Z̄, |Z|2 = ZZ̄, etc.
In the limit g → ∞ the right-hand side of (B6) coincides exactly with the Landau

Hamiltonian for a non-relativistic particle in a constant magnetic field, which we have
discussed extensively in [7] (e.g. see (2.9) of [7]). This explains why the monopole spectrum
given by (3.3) contains the harmonic oscillator part. In the opposite limit,g → 0, the
oscillator-like term (i.e.14|Z|2) vanishes and we obtain the rigid rotator problem. The path
integral based on the Hamiltonian (B6) will not contain an imaginary i-factor (e.g. see (6.8)
of [18]) and, hence, there is no need to use 1/i-factors in equations (2.3) and (2.10) if the
corresponding path integrals are written with explicit account of the existing geometrical
constraints.
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